Raman Lidar Observations of Lifting at a Convergence Line

B. Demoz, K. Evans

University of Maryland-Baltimore County, Baltimore, MD

D. Starr, D. Whiteman, G. Schwemmer

NASA Goddard Space Flight Center, Greenbelt, MD

D. Turner

Pacific Northwest National Laboratory, Richland, WA

Acknowledgment:

U.S. Department of Energy, Atmospheric Radiation Measurement program. NASA - Atmospheric Dynamics and Remote Sensing Program.

Outline

- Boundary Layer Convergence Lines (BLCL):
 - What are they and Why are they important?
 - What is needed to forecast BLCL?
- Raman lidars can be used to study BLCL:
 - How are they used?
 - Case study 28 September 1997
 - Synoptic overview
 - Wind information
 - Raman lidar data
 - Water vapor data
 - Cloud base height information
 - Ancillary data: other remote sensing instruments?
- Theoretical implications
- Summary

What are Boundary Layer Convergence lines (BLCL)?

Opposing flows in the Boundary layer leading to convection.

How important are BLCL lines?

- lead to "Moisture Lifting" which leads to clouds and storms
- Convective storms form near BLCL (see Wilson and Schreiber, 1986, BAMS)
 - 75% of all storms (in Colorado)
 - 95% of intense storms
- Rainfall is correlated to low-level wind convergence (see Byers and Rodebush, 1948; Watson and Blanchard, 1984)

BLCL are key to understanding cloud and storm dynamics as well as forecasting these systems.

What is needed to Forecast BLCL?

- D displacement (or lifting depth d_{max})
- V is speed above the boundary layer
- U relative speed of colliding flows
- N is Brunt-Vaisala frequency above BLC

Theoretical Prediction of D?

- works for V/U > 1
- works for *No-Flow* above BLC
- fails if V/U < 1!!

Observation should

- 1) fill where theory fails and
- 2) test the validity of the theory

Theoretical Background

(see Crook and Klemp, 2000, JAS)

What we need from observation:

- Is there a BLC?
- Will it form clouds (How high is moisture lifted)?
- Why is there? (Dynamics of the lifting?)

How can Raman lidars be used?

- Water vapor is conserved
- Wind and vapor are correlated

Visualize the dynamics

- Aerosol backscatter(see *Demoz et al. 2000, GRL*)- Liquid water is possible

- Liquid water is possible (see *Whiteman et al 1999, JGR*)

Lifting depth derived from cloud base

Raman Lidars used in this study:

- The GSFC Scanning Raman Lidar (or SRL) (see Whiteman et al, Evans et al, ILRC2000)
- DOE/ARM Raman Lidar (or CARL) (see *Turner et al*, *ILRC2000*)

CASE STUDY:

28 September 1997 at CART, Oklahoma (USA)

- Moist/warm pre-frontal air-mass
- Cold frontal air-mass

Provided the colliding flows for BLCL

Wind Information: (50 and 915 MHz Profilers)

Wind summary:

[50 MHz (2-12 km) & 915 (1-5km)]

Pre-front

Wind Direction: 180^o

Wind Speed: 5 to 10 m/sec

Post-front

Wind Direction: 00-100

Wind speed: 5 to 10 m/sec

Wind conditions for boundary layer convergence were roughly met!

CARL Water Vapor Mixing Ratio and RH Data:

Water Vapor Summary:

Day and night operation

Moisture "lifting" detailed (continuos operation)

Moisture transitions detected (Note the narrow convergence line!)

Cold-front structure revealed

Boundary Layer Convergence Line dynamics visualized!!

We needed to know

Is there a BLCL?

Will it form clouds (how high is moisture lifted)?

Why is there? (Dynamics of the lifting?

So far, we have shown

- Opposing flows (Profiler)
- Low level moisture (Raman Lidar)
- Lifting or cloud formation (Raman Lidar)
- Brunt-Vaisala frequency, N (3-hr Sonde)

Isentropes P'=0 P'=0 Warm and Moist Cold and Dry Air Air U

We still need to know

- Lifting, How high (d_max)?

Assumption:

We will assume cloud base height can be used as an indicator for the lifting depth.

How well can the Raman lidars detect Cloud Base Height?

SRL/CARL Cloud Base Heights:

• From Belfort Laser Ceilometer

SRL/CARL Cloud Base Heights Summary:

- Agrees well with
 - Belfort Laser Ceilometer
 - MPL
- Virga can be detected using vapor-liquid-aerosol channels (see Demoz et al. GRL 2000)
- Depolarization can be used to better define virga regions (CARL)

Raman Lidars
detect
Cloud Base Height
well

==> Raman lidars can give Lifting depth, d_{max}!!

Theoretical Background

(see Crook and Klemp 2000)

- d_{max} maximum displacement
- V is flow above the boundary layer
- U maximum horizontal speed
- N is Brunt-Vaisala frequency

Prediction of D

- Works for V/U > 1
- Works for No-Flow above
- fails V/U < 1!!

Raman lidars

can help fill this theoretical

gap!!

Summary and Conclusion:

Boundary Layer Convergence Lines (BLCL) are key to understanding cloud and storm dynamics as well as forecasting these systems.

Raman Lidars can

- measure detailed water vapor and aerosol profile of BLCL
- visualize the dynamics of BLCL
- detect clouds
 - can identify BLCL
 - Cloud Base Height can be used as "lifting depth"
- fill where the linear theory fails and
- test the "physics" in the theory